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1 The Fay Herriot Model

1.1 Model Notations

The Fay Herriot model can be written as follows:

yi = xTi β + vi + ei i = 1, ...,m (1)

where xi is a vector of known covariates, β is a vector of unknown regresson
coe�cients, vi's are area speci�c random e�ects and ei's represent sampling
errors. It is assumed that the vi ∼ N(o, ψ) and ej ∼ N(0, Dj) are independent
for all pairs (i,j). We further assume that ψ is unknown but the Di's are known.
Each of the i's correspond to a small area. The ultimate goal of this package
is to �t the fay herriot model to a given data and return estimates of several
parameters noteworthy of which are the small area means, and mean square
error of the small are mean. Below we give the de�nitions of the quantities of
interest.

1.2 Vector Notation of the model

y = Xβ + v + ϵ (2)

where v ∼ Nm(0, ψI) and ϵ ∼ Nm(0, D) where Nm stands for the m dimensional
Multivariate Normal Distribution I is the m ×m identity matrix and D is an
m×m diagonal matrix with elements D1, ..., Dm. Also we will call the variance
covariance matrix of Y as V, a diagonal matrix with i− th diagonal element =
ψ +Di

1.3 Variance component

There is a more general de�nition of variance component, but for our pur-
poses ψ, the variance of the random e�ects is the variance component.
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1.4 estimate of the variance component

There are four popular ways of estimating the variance components

� The Prasad Rao estimator denoted by ψ̂PR has the form yT (I−PX)y−tr((I−PX)D)
m−p

where PX=X(XTX)−1XT is the projection matrix onto the column space
of X.

� The Fay Herriot estimator denoted by ψ̂FH is obtained by solving the
equation

yTQ(ψ)y

m− p
= 1 (3)

iteratively, where

yTQ(ψ)y =

m∑
i=1

(yi − xTi β)
2

ψ +Di

We will use unirrot function in the stats package of R to solve the equation.

� The Maximum likelihood estimator denoted by ψ̂ML is obtained by max-
imizing the likelihood function. Note that in our model assumptions we
have already incorporated normality assumption. So the likelihood would
be a normal likelihood. hence it should be made sure while �tting the
model that the normality assumptions are met.

� The REML (aka Residual Maximum Likelihood aka Restricted Maximum
Likelihood) encompasses the main drawback of the likelihood approach of
estimating by adjusting for the degrees of freedom involved in estimating
the �xed e�ects. In broad generality By multiplying with vectors k that
belong to the null space of the matrix X on both sides of equation 2, we
can get

kT y = kT v + kTv

But this makes us vulnerable to the option that the estimator might de-
pend on the choice of the vector k. However that problem can be resolved
by �nding REML estimators as a solution to the REML equations. For
details see Searle, Casella, McCulloch (Wiley, 2006), sec 6.6. We then use
the scoring method to solve the REML equations. Without going into the
general theory of the REML we will write down the equation for imple-
mentation of the scoring algorithm here. The iterates in �sher scoring are
given by the following formula

ψ(n+1) = ψ(n) + [IRψ
(n)]−1s−1

R (ψ(n)) (4)
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where

IR(ψ) =
1

2
tr(PBPB)

sR(ψ) = −1

2
tr(PB) +

1

2
yTPBPy

P = V −1 − V −1X(XTV −1X)−1XTV −1

where V is the variance covariance matrix of Y, a diagonal matrix with
i− th diagonal element = ψ+Di. There is a more general de�nition of B
(see the references), But for our purposes B is the Identity matrix.

1.5 Estimates of the Regression Coe�cients

Estimates of the regression coe�cients are given by the formula (XTV −1X)−1XTV −1y
and is denoted by β̃. However note that V is a function of unknown ψ and known
Di's. So ψ's have to be estimated as we discussed in the section 1.2.5. we will
often denote by β̃ by β̃(ψ) when the V in the above formula is has not been
estimated from data, whereas if the V in the above formula has been estimated
from data(denote by V̂ ), it will be denoted by β̃(ψ̂) and sometimes by β̂. In

Fay herriot Model the expressions of β̃ is (
n∑
i=1

xix
T
i

ψ+Di
)−1(

n∑
i=1

xiyi
ψ+Di

) and that β̂ is

the same expression with ψ replaced by ψ̂

1.6 Small Area mean

The small area mean is a quantity η=Xβ + v for our purposes.
The small area mean for the i-th small area is thus ηi=x

T
i β + vi

1.7 The estimated Small Area mean: The BLUP and
EBLUP

If β and ψ are both known the best predictor of η is given by

E(η|y) = Xβ + E(v|y)

= Xβ +


ψ

ψ+D1
(y1 − xT1 β)

.

.

.
ψ

ψ+Dm
(ym − xTmβ)


However if only β is unknown, it is customary to replace β in the above

expression by β̃ and the result will be called BLUP.
Further if both β and ψ are unknown, we replace ψ by ψ̂ and β by β̂ and

the result will be called EBLUP.
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1.8 Estimate of the Mean Squared Prediction error(MSPE)
of EBLUP

Another feature of our package is that it gives second order unbiassed esti-
mator of the mean squared prediction error(MSPE) of the EBLUP of the small
area means. The MSPE of the EBLUP of the i− th small area is given by

MSPE(η̂i) = E(η̃B,i − ηi)
2 + E(η̃i − η̃B,i)

2 + E(η̂i − η̃i)
2

where η̃B,i =
ψ

ψ +Di
yi −

Di

ψ +Di
xTi β

= g1i(ψ) + g2i(ψ) + E(η̂i − η̃i)
2

Further analytic expressions can be obtained of the �rst two terms

g1i(ψ) =
ψDi

ψ +Di

g2i(ψ) = (
Di

ψ +Di
)2xTi [

n∑
j=1

(
xjx

T
j

ψ +Dj
)]−1xi

Note that g1i(ψ) = O(1) and g2i(ψ) = O(m−1) And the third term can be
written as

E(η̂ − η̃)2 = g3i(ψ) + o(m−1)

The expression of g3i varies from case to case. We list below the di�erent
expressions

g3i(ψ) =
2D2

i

(ψ +Di)3m2

m∑
j=1

(ψ +Dj)
2 for Prasad Rao

=
2D2

i

(ψ +Di)3
[

m∑
j=1

(ψ +Dj)
−2]−1 for ML and REML

=
2D2

im

(ψ +Di)3
[

m∑
j=1

(ψ +Dj)
−1]−2 for Fay Herriot

Finally we list below the second order approximated estimates of the MSPE
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we described above

̂MSPE(η̂i) = g1i(ψ̂PR) + g2i(ψ̂PR) + 2g3i,PR(ψ̂PR) for prasad raôMSPE(η̂i) = g1i(ψ̂REML) + g2i(ψ̂REML) + 2g3i,REML(ψ̂REML) for REML

= g1i(ψ̂ML) + g2i(ψ̂ML) + 2g3i,ML(ψ̂ML)

−(
Di

ψ̂ML +Di

)2{
m∑
j=1

(ψ̂ML +Dj)
−2}−1

×tr{(
m∑
j=1

xjx
T
j

ψ̂ML +Dj

)−1
m∑
j=1

xjx
T
j

(ψ̂ML +Dj)2
} for ML

̂MSPE(η̂i) = g1i(ψ̂FH) + g2i(ψ̂FH) + 2g3i,FH(ψ̂FH)

−2(
Di

ψ̂FH +Di

)2{
m∑
j=1

(ψ̂FH +Dj)
−1}−3

×[m

m∑
j=1

(ψ̂FH +Dj)
−2 − {

m∑
j=1

(ψ̂FH +Dj)
−1}2]

For the details on the derivation of these results please see the references.

2 Examples

Now let us look at a simple examples.

2.1 First Example: prasadraoest

In the �rst example we will demonstrate what our function prasadraoest
does. This is an auxiliary function of our package. So it has not been designed
to be very user friendly as its main purpose is to compute the prasad rao estimate
of variance component ψ mentioned in section 1.4. The arguements that this
function takes are as follows

� response : This is the y vector. This must be a numeric vector.

� desgnmatrix: This is the matrix X (matrix of covariates with the �rst
column needs to have all entries equal to one). This must be a numeric
matrix.

� sampling.var: This is the vector consisting of the Divalues. This must be
a numeric vector.

> library(smallarea)

> response=c(1,2,3,4,5) # response vector

> designmatrix=cbind(c(1,1,1,1,1),c(1,2,4,4,1),c(2,1,3,1,5))

> # designmatrix with 5 rows and 3 columns,
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> # the first column has all entries equal to one

> sampling.var=c(0.5,0.7,0.8,0.4,0.5)

> # This is the vector of sampling variances

> answer=prasadraoest(response,designmatrix,sampling.var)

> answer

$estimate

[1] 1.780361

> answer$estimate

[1] 1.780361

This function returns a list with only one element in it the estimate of the
variance component

2.2 Second example: fayherriot

This function is pretty similar to the prasadraoest function in appearance,
i.e takes the same arguments (example 1 gives a description of the arguments
in details) and returns a list with only one element, the estimate of the variance
component, except for the fact thatthe method of estimation is the one that was
proposed by Fay Herriot, the formula is given in section 1.4. That is the estimate
is obtained by numerically solving the equation (3) using the uniroot function
in the stats package in R. Uniroot searches for the root of that equation in
an interval which we have speci�ed as (0, ψ̂PR + 3

√
m). If no root is found in

that interval, we have truncated our ψ̂FH at 0.0001 as suggested by Datta, Rao
Smith (2005). To demonstrate the working of this function, we have used the
same data as in prasadraoest

> response=c(1,2,3,4,5)

> designmatrix=cbind(c(1,1,1,1,1),c(1,2,4,4,1),c(2,1,3,1,5))

> sampling.var=c(0.5,0.7,0.8,0.4,0.5)

> fayherriot(response,designmatrix,sampling.var)

$estimate

[1] 1.793244

2.3 Third Example : maximlikelihood

This is an example which demonstrates the functionmaximlikelihood. The
arguments are again same as the last two examples. It returns a list that has
three elements

� estimate: is ψ̂ML.

� reg.coe�cients: a vector of the MLE of the regression coe�cients i.e. β
vector
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� loglikeli.optimum : the value of the log likelihood function at the maxi-
mized value.

we have used the optim function in the stats package in R and used the BFGS
algorithm to minimize the negative log likelihood. The maximum number of
iterations of the algorithm is 100(the default in optim). Since the likelihhod
function is a normal likelihood, care should be taken to check the normality
assumptions of the data. Here the response has been generted from a normal
distribution with mean 3 and standard deviation 1.5. The designmatrix and the
sampling variances are however kept the same as in the last two examples.

> set.seed(55)

> response=rnorm(5,3,1.5)

> designmatrix=cbind(c(1,1,1,1,1),c(1,2,4,4,1),c(2,1,3,1,5))

> sampling.var=c(0.5,0.7,0.8,0.4,0.5)

> maximlikelihood(response,designmatrix,sampling.var)

$estimate

[1] 1.217849

$reg.coefficients

[1] 0.61531211 0.07861667 0.58275733

$loglikeli.optimum

[1] -2.459195

2.4 Fourth Example: resimaxilikelihood

The getup of this function is again very similar to the �rst two examples,
except here there is one additional argument maxiter wherein the user can spec-
ify the maximum number of Fisher scoring iterations. Also here using Fisher's
scoring iteration described in equation (4) in section 1.4 we �nd the REML of
the variance component. A description of the data used is already given in third
example. It returns a list of two elements

� estimate: ψ̂REML

� iterations: number of �sher scoring iterations

> set.seed(55)

> response=rnorm(5,3,1.5)

> designmatrix=cbind(c(1,1,1,1,1),c(1,2,4,4,1),c(2,1,3,1,5))

> sampling.var=c(0.5,0.7,0.8,0.4,0.5)

> resimaxilikelihood(response,designmatrix,sampling.var,maxiter=100)

$estimate

[1] 1.207907

$iterations

[1] 2
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2.5 Fifth Example: smallarea�t

This is the main function in our library. It takes the following arguments

� formula: a formula similar in appearance to that of in lm function in R.
You have to make sure that the data contains a column of the sampling
variances, and that while specifying the formula the the name of the vari-
able that contains the sampling variances should preceede the variables
which are the covariates. e.g In the following example response∼D+x1+x2
is a correct way of specifying the formula where as response∼x1+D+x2 is
not.(note D is the variabe that contains the values of sampling variances
and x1 and x2 are covariates). In general the �rst of the variables on the
right hand side of ∼ will be treated as the vector of sampling variance.

� data : It is an optional data.frame. In absense of this argument our
function will accept variables from the global environment

� method : It can be one of the four methods discussed in this article and
can be any one of the following options "PR","FH","ML","REML"

In usage of each of the four methods, the following will be the output. The
function will return a list that has the following

� smallmean.est: a numeric vector of The EBLUP of the small area means
discussed in section 1.7

� smallmean.mse: a numeric vector of The estimated Mean squared Predic-

tion error ̂MSPE(η̂i) discussed in section 1.8

� var.comp : an estimate of the variance component discussed in section 1.4

� est.coef: a numeric vector containg the estimates of the regression coe�-
cients as discussed in section 1.5 and is denoted by β̂ beginning with the
intercept in the order as speci�ed in the formula.

The following example just illustrates what we have just discussed. Also note
that the maximum number of Fisher scoring iterations have been set to 100 for
the REML proceedure.

> data=data.frame(response=rnorm(5,3,1.5),

+ x1=c(1,2,4,4,1),x2=c(2,1,3,1,5),D=c(0.5,0.7,0.8,0.4,0.5))

> data

response x1 x2 D

1 4.782778 1 2 0.5

2 2.241984 2 1 0.7

3 2.851148 4 3 0.8

4 3.458030 4 1 0.4

5 3.297615 1 5 0.5
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> ans=smallareafit(response~D+x1+x2,data,method="FH")

> ans1=smallareafit(response~D+x1+x2,data,method="REML")

> ans2=smallareafit(response~D+x1+x2,data,method="PR")

> ans3=smallareafit(response~D+x1+x2,data,method="ML")

> ans # FH method

$smallmean.est

[1] 4.424377 2.821458 2.873995 3.336231 3.380075

$smallmean.mse

1 2 3 4 5

0.5729548 0.7319444 0.8677240 0.4727353 0.6264921

$var.comp

[1] 0.9183763

$est.coef

[1] 4.18501040 -0.26255996 -0.07818307

> ans1 # REML method

$smallmean.est

[1] 4.421117 2.826725 2.874197 3.335126 3.380827

$smallmean.mse

1 2 3 4 5

0.5730635 0.7309004 0.8665975 0.4731850 0.6270866

$var.comp

[1] 0.9047237

$est.coef

[1] 4.18625952 -0.26266982 -0.07843891

> ans2 # PR method

$smallmean.est

[1] 4.427651 2.816168 2.873791 3.337340 3.379320

$smallmean.mse

1 2 3 4 5

0.5770696 0.7388315 0.8753713 0.4755707 0.6301189

$var.comp

[1] 0.9323386

$est.coef

[1] 4.18375604 -0.26244965 -0.07792615
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> ans3 # ML method

$smallmean.est

[1] 4.403782 2.780007 2.871596 3.319181 3.384635

$smallmean.mse

1 2 3 4 5

0.4620107 0.5662407 0.6757235 0.3901495 0.5150600

$var.comp

[1] 0.9323386

$est.coef

[1] 4.04772592 -0.25053063 -0.05005895

2.6 An example where smallarea accepts variables from
the global environment

Our �nal example is that of usage of small area function that accepts vari-
ables from Global environment

> data=data.frame(response=rnorm(5,3,1.5),

+ x1=c(1,2,4,4,1),D=c(0.5,0.7,0.8,0.4,0.5))

> attach(data)

> ans=smallareafit(response~D+x1,method="FH")

> ans1=smallareafit(response~D+x1,method="REML")

> ans2=smallareafit(response~D+x1,method="PR")

> ans3=smallareafit(response~D+x1,method="ML")

> ans

$smallmean.est

[1] 3.0150163 0.8869773 2.7774122 1.4308082 2.8797010

$smallmean.mse

1 2 3 4 5

0.5321873 0.6819030 0.8236020 0.4367694 0.5321873

$var.comp

[1] 1.609707

$est.coef

[1] 2.686916 -0.203722

> ans1

$smallmean.est

[1] 3.0085987 0.9102301 2.7600286 1.4350709 2.8750459
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$smallmean.mse

1 2 3 4 5

0.5335419 0.6799558 0.8221450 0.4388396 0.5335419

$var.comp

[1] 1.524801

$est.coef

[1] 2.6905866 -0.2053299

> ans2

$smallmean.est

[1] 3.0215923 0.8631283 2.7952330 1.4264405 2.8844817

$smallmean.mse

1 2 3 4 5

0.5319471 0.6855882 0.8270283 0.4355317 0.5319471

$var.comp

[1] 1.703841

$est.coef

[1] 2.6831519 -0.2020736

> ans3

$smallmean.est

[1] 3.009898 0.859762 2.817091 1.439448 2.872787

$smallmean.mse

1 2 3 4 5

0.4833025 0.6056660 0.7309263 0.4013165 0.4833025

$var.comp

[1] 1.703841

$est.coef

[1] 2.5916196 -0.1620874

2.7 A �nal example

Now we will actually use a more interesting example taken forom the paper
Reference 1 .We take the total number of small areas, n=15, ψ = 1 and three
sampling variance, Di-patterns: 0.7, 0.6, 0.5, 0.4, 0.3; There are �ve groups
G1, ..., G5 and three small areas in each group. The sampling variances Di
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are the same for areas within the same group. We will investigate through
simulation for the area level model without covariates xTi β = µ. Since the mean
squared error is translation invariant, we set µ = 0 without loss of generality.
However, to account for the estimation of unknown regression parameters that
arise in applications, we will still estimate this zero mean. We will consider
distributions for the variance components vi's, namely N(0, 1). The sampling
error, ei, will be generated from N(0, Di) for Di as speci�ed above.

> set.seed(55)

> # the sampling variances

> D=c(rep(0.7,3),rep(0.6,3),rep(0.5,3),rep(0.4,3),rep(0.3,3))

> # generating the errors

> e1=rnorm(3,0,sqrt(D[1]))

> e2=rnorm(3,0,sqrt(D[4]))

> e3=rnorm(3,0,sqrt(D[7]))

> e4=rnorm(3,0,sqrt(D[10]))

> e5=rnorm(3,0,sqrt(D[13]))

> e=c(e1,e2,e3,e4,e5)

> psi=1

> # generating the random small area effects

> v=rnorm(15,0,psi)

> # response

> y=v+e

> data1=data.frame(response=y,D=D)

> head(data1)

response D

1 -0.2657625 0.7

2 0.8390206 0.7

3 1.2202007 0.7

4 -0.5811039 0.6

5 0.9951359 0.6

6 -0.5986495 0.6

> fit1.pr=smallareafit(response~D,data1,method="PR")

> fit1.pr

$smallmean.est

[1] 0.01933153 0.44238767 0.58835347 -0.13020013 0.53174366 -0.13756843

[7] 0.63489543 0.45342849 0.70099509 0.54141111 0.57794174 -0.54392266

[13] 0.23947479 -1.00295090 0.02844395

$smallmean.mse

1 2 3 4 5 6 7 8

0.3711601 0.3711601 0.3711601 0.3499072 0.3499072 0.3499072 0.3228506 0.3228506

9 10 11 12 13 14 15

0.3228506 0.2878219 0.2878219 0.2878219 0.2417183 0.2417183 0.2417183
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$var.comp

[1] 0.4343958

$est.coef

[1] 0.196251

We have used only Prasad Rao method in the last example, similarly other
methods can also speci�ed.
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